Estudios Geográficos, Vol 80, No 287 (2019)

Estimación de la temperatura basal del “Glaciar Norte” del volcán Citlaltépetl, México. Modelo para determinar la presencia de permafrost subglaciar


https://doi.org/10.3989/estgeogr.201936.016

Víctor Hugo Soto Molina
Universidad Nacional Autónoma de México, México
orcid https://orcid.org/0000-0003-1633-0752

Hugo Delgado Granados
Universidad Nacional Autónoma de México, México
orcid https://orcid.org/0000-0001-5263-7968

Guillermo Ontiveros González
Universidad Nacional Autónoma de México, México
orcid https://orcid.org/0000-0001-8286-6737

Resumen


Se estudian las condiciones de temperatura y la conductividad del hielo del “Glaciar Norte” del volcán Citlaltépetl con el objeto de determinar la existencia de permafrost basal. A partir de registros de temperatura cercanos a la superficie se estimó la temperatura media en estado estacionario del interior del “Glaciar Norte” mediante un método sinusoidal que utiliza las propiedades termo-conductoras del hielo. A través de su perfil de temperatura se obtuvo una aproximación a las condiciones térmicas del principal glaciar de México. Los resultados podrían sugerir la existencia de un permafrost basal, el cual sería producto del aislamiento del hielo y de la conducción térmica por contacto directo entre el hielo y el substrato.

Palabras clave


Glaciar; permafrost basal; conducción de calor; temperatura; estado estacionario

Texto completo:


HTML PDF XML

Referencias


Ahrens, C. D. (2006). Meteorology Today, An Introduction to Weather, Climate and Environment (8.ª ed.). California, USA: Thompson Brooks/Cole Publishing.

Andújar Márquez, J. M., Martínez Bohórquez, M. Á., y Gómez Melgar, S. (2016). Ground thermal diffusivity calculation by direct soil temperature measurement. Application to very low enthalpy geothermal energy systems. Sensors, 16(306), 1-13. https://doi.org/10.3390/s16030306 PMid:26938534 PMCid:PMC4813881

Arya, P. S. (2001). Introduction to micrometeorology (Vol. 79). Academic press.

Barry, R.G. (2017). The Arctic cryosphere in the twenty-first century, Geographical Review, 107, 1, 69-88. https://doi.org/10.1111/gere.12227

Bennett, M. M., y Glasser, N. F. (eds.) (2011). Glacial geology: ice sheets and landforms (2.ª ed.). West Sussex, UK: John Wiley & Sons.

Blatter, H., y Haeberli, W. (1984). Modelling temperature distribution in Alpine glaciers. Annals of Glaciology, 5(1), 18-22. https://doi.org/10.3189/1984AoG5-1-18-22

Bockheim J.G., y Hall K.J., (2002). Permafrost, active-layer dynamics and periglacial environments of continental Antarctica. S. Afr. J. Sci., 98, 82-90.

Cai, B., Huang M., y Xie Z. (1988). A preliminary research on the temperature in deep boreholes of Glacier No. I, Urumqi headwaters. Kexue Tongbao, 33(24), 2054-2056.

Carrasco-Núñez, G. (2000). Structure and proximal stratigraphy of Citlaltepetl volcano (Pico de Orizaba), Mexico. En Cenozoic tectonics and volcanism of Mexico (pp. 247-262), vol. 334. https://doi.org/10.1130/0-8137-2334-5.247

Carrasco-Núñez, G., y Rose, W. I. (1995). Eruption of a major Holocene pyroclastic flow at Citlaltépetl volcano (Pico de Orizaba), México, 8.5-9.0 ka. Journal of volcanology and geothermal research, 69(3), 197-215. https://doi.org/10.1016/0377-0273(95)00023-2

Ceballos-Liévano, J. L., Rodríguez-Murcia, C. E., y Real- Núñez, E. L. (eds.) (2012). Glaciares de Colombia, más que montañas con hielo. Bogotá: IDEAM.

Cortés-Ramos, J., y Delgado-Granados, H. (2012). The recent retreat of Mexican glaciers on Citlatepetl volcano detected using ASTER data. The Cryosphere Discussions, 6, 3149-3176. https://doi.org/10.5194/tcd-6-3149-2012

Cortés-Ramos, J., y Delgado-Granados, H. (2015). Reconstruction of glacier area on Citlaltépetl volcano, 1958 and implications for Mexico's deglaciation rates. Geofísica internacional, 54(2), 111-125. https://doi.org/10.1016/j.gi.2015.04.008

Cuffey, K. M., y Paterson, W. S. B. (2010). The physics of glaciers (4.ª ed.). Oxford, UK: Elsevier, Inc.

Demek, J. (1994). Global warming and permafrost in Eurasia: a catastrophic scenario, Geomorphology, 10, 317-329. https://doi.org/10.1016/B978-0-444-82012-9.50024-4

Derradji, M., y Aiche, M. (2014). Modeling the soil surface temperature for natural cooling of buildings in hot climates. Procedia Computer Science, 32, 615-621. https://doi.org/10.1016/j.procs.2014.05.468

Dobi?ski, W. (2012). The cryosphere and glacial permafrost as its integral component. Central European Journal of Geosciences, 4(4), 623-640. https://doi.org/10.2478/s13533-012-0109-8

Dyke, A.S., (1993). Landscapes of cold-centred Late Wisconsin ice caps, Arctic Canada. Prog. Phys. Geog. 17, 223-247. https://doi.org/10.1177/030913339301700208

Fountain, A. (2011). Temperate glaciers. In: V. P. Singh, U. K. Haritashya, P. Singh (eds.). Encyclopedia of snow, ice and glaciers (pp. 11455). Berlin: Springer. https://doi.org/10.1007/978-90-481-2642-2_566

French, H.M. (1976). The periglacial environment (1.ª ed.). London and New York: Longman.

French, H.M. (2007). The periglacial environment (3.ª ed.). Chichester, New Jersey: Wiley and Sons. https://doi.org/10.1002/9781118684931

French, H.; Shur, Y. (2010). The principles of criostratigrapy, Earth-Science Reviews, 101, 190-206. https://doi.org/10.1016/j.earscirev.2010.04.002

Gemmell, A.M.D., Sharp, M.J., Sugden, D.E., (1986). Debris from the basal ice of the Agassiz ice-cap, Ellesmere Island, Arctic Canada. Earth Surf. Process Landf. 11, 123-130. https://doi.org/10.1002/esp.3290110203

Givoni, B., y Katz, L. (1985). Earth temperatures and underground buildings. Energy and Buildings, 8(1), 15-25. https://doi.org/10.1016/0378-7788(85)90011-8

Gow, A.J., Epstein, S., Sheehy, W., (1979). On the origin of stratified debris in ice cores from the bottom of the Antarctic ice sheet. J. Glaciol., 23, 185-192. https://doi.org/10.3189/S0022143000029828

Grenfell, T. C. (2011). Albedo. En Encyclopedia of Snow, Ice and Glaciers (pp. 23-35). Berlin: Springer. https://doi.org/10.1007/978-90-481-2642-2_14

Heine, K. (1988). Late Quaternary glacial chronology of the Mexican volcanoes. Die Geowissenschaften, 7, 197-205.

Hu, G., Zhao, L., Wu, X., Li, R., Wu, T., Xie, C., y Cheng, G. (2016). An analytical model for estimating soil temperature profiles on the Qinghai-Tibet Plateau of China. Journal of Arid Land, 8(2), 232-240. https://doi.org/10.1007/s40333-015-0058-4

Instituto Nacional de Estadística, Geografía e Informática, INEGI (2017). Anuario estadístico y geográfico de los Estados Unidos Mexicanos. Aguascalientes, Ags: INEGI.

Koerner, R.M., Fisher, D.A. (1979). Discontinuous flow, ice texture and dirt content in the basal layers of Devon Island ice cap. J. Glaciol. 23, 209-222. https://doi.org/10.3189/S0022143000029841

Kotlyakov, V.M. (1984). Glaciological dictionary. Leningrad: Gidrometeoizdat. 528 pp.

Kusuda, T. (1968). Least squares analysis of annual Earth temperatures cycles for selected stations in the United States. Gaithersburg, USA: National Bureau of Standards. https://doi.org/10.6028/NBS.RPT.9493

Kusuda, T. y Achenbach, P. R. (1965). Earth temperature and thermal diffusivity at selected stations in the United States. Building Research Division: National Bureau of Standards, Washington, DC. https://doi.org/10.21236/AD0472916

Ladino Moreno, L. A., Stetzer, O., y Lohmann, U. (2013). Contact freezing, a review of experimental studies. Atmospheric Chemistry and Physics, 13(19), 9745-9769. https://doi.org/10.5194/acp-13-9745-2013

Lauer, W., y Klaus, D. (1975). Geoecological investigations on the timberline of Pico de Orizaba, Mexico. Arctic and Alpine Research, 7, 315-330. https://doi.org/10.2307/1550176

Liu, Y., Hou, S., Wang, Y., y Song, L. (2009). Distribution of borehole temperature at four high-altitude alpine glaciers in central Asia. Journal of Mountain Science, 6(3), 221-227. https://doi.org/10.1007/s11629-009-0254-9

Lorenzo, J. L. (1964). Los glaciares de México (2ª ed.). Monografías del Instituto de Geofísica. México: Universidad Nacional Autónoma de México.

Macías, J. L. (2005). Geología e historia eruptiva de algunos de los grandes volcanes activos de México. Boletín de la Sociedad Geológica Mexicana, 57(3), 379-424. https://doi.org/10.18268/BSGM2005v57n3a6

Macías, J. L. (2007). Geology and eruptive history of some active volcanoes of México, Geological Society of America Special Papers, 422, 183-232.

Muhammad, I. S., Baharun, A., y Ibrahim, H. S. (2016). Investigation of Ground Temperature for Heat Sink Application in Kuching, Sarawak, Malaysia. Journal of Civil Engineering, 7(1), 20-29. https://doi.org/10.33736/jcest.152.2016

Ontiveros-González, G. (2018). Estudios de la dinámica glacial del Glaciar Norte del volcán Citlaltépetl. Tesis de doctorado. Posgrado en Ciencias de la Tierra. Cd. De México: UNAM.

Ontiveros-González, G., Delgado-Granados, H., y Cortés-Ramos, J. (2015). Surface Energy Balance model for high-altitude glacial system at 19° N on Glaciar Norte, Mexico. Geofísica internacional, 54(4), 299-314.

Palacios, D., y Marcos, J. D. (1998). Glacial retreat and its geomorphologic effects on Mexico's active volcanoes, 1994-95. Journal of Glaciology, 44(146), 63-67. https://doi.org/10.1017/S0022143000002355

Paterson, W.S.B. (1981). The physics of glaciers. (2.ª ed.). New York: Pergamon Press.

Ramírez, A. Z., y Muñoz, C. B. (2012). Albedo effect and Energy efficiency of cities. In Sustainable Development-Energy, Engineering and Technologies- Manufacturing and Environment. Shangai, China: InTech, 3-18.

Rivas, R. y Caselles V. (2004). A simplified equation to estimate spatial reference evaporation from remote sensing based surface temperature and local meteorological data. Remote Sensing of Environment, 93, 68-76. https://doi.org/10.1016/j.rse.2004.06.021

Rivas, R., y Ocampo, D. (2009). Comportamiento del balance de energía en un cultivo de Avena sativa L. En Estudios de la zona no saturada del suelo (pp. 336-343).Barcelona: Área Temática III.

Robin, G. (1955). Ice Movement and Temperature Distribution in Glaciers and Ice Sheets. Journal of Glaciology, 2 18, 523-532. https://doi.org/10.3189/002214355793702028

Upadhyay, G., Kämpf, J. H., y Scartezzini, J. L. (2014). Ground temperature modelling: The case study of Rue des Maraîchers in Geneva. In Proceedings of the EuroGraphics 2014 on Urban Data Modelling and Visualisation (pp. 1-6). EuroGraphics Digital Library.

Van Den Broeke, M., Fettweis, X., y Mölg T. (2011). Surface energy balance. In Encyclopedia of Snow, Ice and Glaciers (pp. 23-35). Berlin: Springer. https://doi.org/10.1007/978-90-481-2642-2_132

Vázquez-Selem, L., (2011). Las glaciaciones en las montañas del centro de México. En M. Caballero y B. Ortega Guerrero (Eds.), Escenarios de cambio climático: registros del Cuaternario de América Latina I (pp.215-238). México: Universidad Nacional Autónoma de México.

Yoshikawa, K. (ed.) (2013). Permafrost in our time: community-based permafrost temperature archive. Fairbanks AK: University of Alaska Fairbanks Permafrost Outreach Program.

Yusof, T. M., Anuar, S., e Ibrahim, H. (2014). Numerical investigation of ground cooling potential for Malaysian climate. International Journal of Automotive and Mechanical Engineering, 10, 2081-2090. https://doi.org/10.15282/ijame.10.2014.24.0175

Zagorodnov, V., Nagornov, O., y Thompson, L. G. (2006). Influence of air temperature on a glacier's active-layer temperature. Annals of Glaciology, 43(1), 285-291. https://doi.org/10.3189/172756406781812203




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista estudiosgeograficos.cchs@cchs.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es