Alternatives for the measurement of urban crime and the identification of criminogenic zones. New indicators based on the presence of population
DOI:
https://doi.org/10.3989/estgeogr.2022127.127Keywords:
citizen security, environmental criminology, crime generators, crime attractors, social media, economic units, ambient populationAbstract
The objective of this paper is to propose alternative ways of measuring crime rates in urban settings, comparing the use of the presence of population with the traditional measurement, that is, the residential population. The analysis is carried out for three types of crimes: domestic violence, personal robbery and business robbery. To achieve this, a methodology of spatial analysis of the data of the Guadalajara Metropolitan Area (ZMG), Mexico is conducted. The results show that, for some types of crime, the presence of population can more accurately identify the population at risk, which can constitute a very useful public policy tool for crime prevention, since in addition to achieving a more precise estimation of the phenomenon, the areas that generate and attract crime can be identified.
Downloads
References
Asociación Mexicana del Internet (2016). Estudio de Hábitos de los Usuarios de Internet en México. Ciudad de México: AMIPCI.
Andresen, M. A. (2006). Crime measures and the spatial analysis of criminal activity. British Journal of Criminology, 46(2), 258-285. https://doi.org/10.1093/bjc/azi054
Andresen, M. A. (2011). The ambient population and crime analysis. The Professional Geographer, 63(2), 193-212. https://doi.org/10.1080/00330124.2010.547151
Andresen, M. A. & Jenion, G. W. (2008). Crime prevention and the science of where people are. Criminal Justice Policy Review, 19(2), 164-180. https://doi.org/10.1177/0887403407311591
Andresen, M. A. & Linning, S. J. (2012). The (in)appropriateness of aggregating across crime types. Applied Geography, 35(1-2), 275-282. https://doi.org/10.1016/j.apgeog.2012.07.007
Blank, G. (2017). The Digital Divide Among Twitter Users and Its Implications for Social Research. Social Science Computer Review, 35(6), 679-697. https://doi.org/10.1177/0894439316671698
Brantingham, P. & Brantingham, P. (Eds.). (1981). Environmental Criminology. Sage Publications.
Brantingham, P. & Brantingham, P. (1995). Criminality of place. European Journal on Criminal Policy and Research, 3(3), 5-26. https://doi.org/10.1007/BF02242925
Brantingham, P. & Brantingham, P. (2008). Crime pattern theory. En R. Wortley & L. Mazerolle (Eds.) Environmental Criminology and Crime Analysis (pp. 78-93). Willan Publishing.
Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación & Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación. (2020). Medición de Movilidad usando Facebook, Google y Twitter. Consejo Nacional de Ciencia y Tecnología.
Chan, J., & Bennett M. L. (2015). Is Big Data challenging criminology? Theoretical Criminology, 20(1), 21-39. https://doi.org/10.1177/1362480615586614
Cheng, T. & Chen, T. (2021). Urban Crime and Security. En W. Shi, M. F. Goodchild, M. Batty, K. Mei-Po & Z. Anshu Zhang (Eds.), Urban Informatics (pp. 213-228). Springer. https://doi.org/10.1007/978-981-15-8983-6_14
Fiscalía General del Estado de Jalisco (2021). Número de delitos registrados en carpetas de averiguación de la Fiscalía de Jalisco por año de 2016 a agosto 2021. https://datos.jalisco.gob.mx/dataset/numero-de-delitos-registrados-en-carpetas-de-averiguacion-de-la-fiscalia-de-jalisco-de-2016
Cohen, L. E., & Felson, M. (1979). Social change and crime rate trends: A routine activity approach. American Sociological Review, 588-608. https://doi.org/10.2307/2094589
Getis, A., & Ord, J. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189-206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., & Ratti, C. (2014). Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 41(3), 260-271. https://doi.org/10.1080/15230406.2014.890072 PMid:27019645 PMCid:PMC4786829
Instituto Nacional de Estadística y Geografía. (2010). Censo de Población y Vivienda. Aguascalientes: Instituto Nacional de Estadística y Geografía.
Instituto Nacional de Estadística y Geografía (2017). Directorio Estadístico Anual de Unidades Económicas (DENUE). Aguascalientes: Instituto Nacional de Estadística y Geografía.
Instituto Nacional de Estadística y Geografía. (2020a). Encuesta Nacional de Victimización y Percepción sobre Seguridad Pública (ENVIPE) 2020. Aguascalientes: Instituto Nacional de Estadística y Geografía.
Instituto Nacional de Estadística y Geografía. (2020b). Encuesta Nacional sobre Disponibilidad y Uso de Tecnologías de la Información en los Hogares (ENDUTIH) 2020. Aguascalientes: Instituto Nacional de Estadística y Geografía.
Kinney, J. B., Brantingham, P. L., Wuschke, K., Kirk, M. G., & Brantingham, P. J. (2008). Crime attractors, generators and detractors: Land use and urban crime opportunities. Built Environment, 34(1), 62-74. https://doi.org/10.2148/benv.34.1.62
Lubbe, S., Filzmoser, P., & Templ, M. (2021). Comparison of zero replacement strategies for compositional data with large numbers of zeros. Chemometrics and Intelligent Laboratory Systems, 210, 104248. https://doi.org/10.1016/j.chemolab.2021.104248
Malleson, N., & Andresen, M. A. (2014). The impact of using social media data in crime rate calculations: shifting hot spots and changing spatial patterns. Cartography and Geographic Information Science, 42(2), 112-121. https://doi.org/10.1080/15230406.2014.905756
Malleson, N., & Andresen, M. A. (2015). Spatio-temporal crime hotspots and the ambient population. Crime Science, 4(1), 1-8. https://doi.org/10.1186/s40163-015-0023-8
Malleson, N., & Andresen, M. A. (2016). Exploring the impact of ambient population measures on London crime hotspots. Journal of Criminal Justice, 46, 52-63. https://doi.org/10.1016/j.jcrimjus.2016.03.002
Maltz, M. D. (1999). Bridging gaps in police crime data. DIANE Publishing.
Osorio, J. (2020). Análisis de los patrones espacio-temporales de eventos a partir de datos de Twitter: el caso de la World Pride 2017 en Madrid. Estudios Geográficos, 81(288), e032. https://doi.org/10.3989/estgeogr.202047.027
Pramanik, M. I., Lau, R. Y. K., Yue, W. T., Ye, Y., & Li, C. (2017). Big data analytics for security and criminal investigations. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(4), e1208. https://doi.org/10.1002/widm.1208
Ristea, A., Langford, C., & Leitner, M. (2017, August). Relationships between crime and Twitter activity around stadiums. 2017 25th International Conference on Geoinformatics (pp. 1-5). IEEE. https://doi.org/10.1109/GEOINFORMATICS.2017.8090933
Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública. (2017). Datos abiertos de incidencia delictiva. Ciudad de México: Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública.
Snaphaan, T., & Hardyns, W. (2019). Environmental criminology in the big data era. European Journal of Criminology, 18(5), 147737081987775. https://doi.org/10.1177/1477370819877753
Traunmueller, M., Quattrone, G., & Capra, L. (2014, November). Mining mobile phone data to investigate urban crime theories at scale. En L. Aiello & D. McFarland (Eds.) Social Informatics (pp. 396-411). Springer. https://doi.org/10.1007/978-3-319-13734-6_29
Trinidad, A., San Juan, C., & Vozmediano, L. (2019). Escenarios de delincuencia juvenil en el ámbito urbano: una perspectiva situacional. Revista Criminalidad, 61(2), 9-24.
Wang, X., Gerber, M. S., & Brown, D. E. (2012). Automatic crime prediction using events extracted from twitter posts. En S. Yang; A. Greenberg & M. Ensley (Eds.) Social Computing, Behavioral-Cultural Modeling, and Prediction (pp. 231-238). Springer. https://doi.org/10.1007/978-3-642-29047-3_28
Wang, H., Kifer, D., Graif, C., & Li, Z. (2016, August). Crime rate inference with big data. En Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 635-644). https://doi.org/10.1145/2939672.2939736
Williams, M. L., Burnap, P., & Sloan, L. (2017). Crime sensing with big data: The affordances and limitations of using open-source communications to estimate crime patterns. The British Journal of Criminology, 57(2), 320-340. https://doi.org/10.1093/bjc/azw031
Wortley, R., & Mazerolle, L. (2008). Environmental criminology and crime analysis: situating the theory, analytic approach and application. En R. Wortley & L. Mazerolle (Eds.) Environmental criminology and crime analysis (pp. 1-18). Willan Publishing.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.