Discrimination of geological units in southern margin of Alborz Mountain in Iran using ASTER satellite imagery
DOI:
https://doi.org/10.3989/estgeogr.2024161.161Keywords:
ASTER imagery, Alborz Mountain, Geological mapping, BRs-PCsAbstract
In this study, the effectiveness of several image processing techniques, including the band ratio (BR), decorrelation stretch (DS), principal components analysis (PCA), minimum noise fraction (MNF), as well as the ASTER false color composition RGB: 468, was evaluated for the extraction of geological units from ASTER satellite imagery in southern margin of Alborz Mountain in Iran. In addition, a method based on Principal Components of Band Ratios (BRs-PCs) was proposed for discrimination of geological units from ASTER imagery. In this respect, a scene of ASTER Level1T VNIR+SWIR data of the year 2004 was acquired, and a geological map scale 1:100000 of the study area was used as the reference. The results indicated suitability of the conventional image processing techniques for discrimination of geological units, especially the PCA technique, which clearly highlighted Limestone, Basalt, Sandstone, Tuff, Conglomerate, and Dolomite from the ASTER image. The study also demonstrated effectiveness of the BRs-PCs method for geological mapping. This approach considered the advantages of both PCA and BR techniques, therefore, provided a superior result comparing to any of these techniques alone, and also better result comparing to other techniques used in this study. Thus, it may be useful for geological mapping along the whole Alborz Mountain with similar lithological and geomorphological conditions.
Downloads
References
Aali, A. A., Shirazy, A., Shirazi, A., Pour, A. B., Hezarkhani, A., Maghsoudi, A., & Khakmardan, S. (2022). Fusion of remote sensing, magnetometric, and geological data to identify polymetallic mineral potential zones in Chakchak Region, Yazd, Iran. Remote Sensing, 14(23), 6018. https://doi.org/10.3390/rs14236018
Abdelouhed, F., Ahmed, A., Abdellah, A., Mohammed, I., & Zouhair, O. (2021). Extraction and analysis of geological lineaments by combining ASTER-GDEM and Landsat 8 image data in the central high atlas of Morocco. Natural Hazards, 111(2), 1907-1929. https://doi.org/10.1007/s11069-021-05122-9
Aboelkhair, H., & Watanabe, Y. (2011). Using remotely sensed multispectral ASTER data for mapping extensive basalt flow around Al Madinah area, Saudi Arabia. In First International Geomatics Symposium in Saudi Arabia, Geomatics Technologies in the City, GTC.
Adams, J. B., & Filice, A. L. (1967). Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. Journal of Geophysical Research, 72(22), 5705-5715. https://doi.org/10.1029/JZ072i022p05705
Amer, R., Kusky, T., & Ghulam, A. (2010). Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. Journal of African Earth Sciences, 56(2-3), 75-82. https://doi.org/10.1016/j.jafrearsci.2009.06.004
Arabameri, A., Roy, J., Saha, S., Blaschke, T., Ghorbanzadeh, O., & Tien Bui, D. (2019). Application of probabilistic and machine learning models for groundwater potentiality mapping in Damghan sedimentary plain, Iran. Remote Sensing, 11(24), 1-35. https://doi.org/10.3390/rs11243015
Bernknopf, R. L. (1993). Societal value of geologic maps (Vol. 1111). DIANE Publishing. https://doi.org/10.3133/cir1111
Bhan, S. K., & Krishnanunni, K. (1983). Applications of remote sensing techniques to geology. Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences, 6, 297-311. https://doi.org/10.1007/BF02881136
Compton, R. R. (1985). Geology in the Field (p. 416). New York: Wiley.
Davis, G. H., Reynolds, S. J., & Kluth, C. F. (2011). Structural geology of rocks and regions. John Wiley & Sons.
Fal, S., Maanan, M., Baidder, L., & Rhinane, H. (2019). The contribution of Sentinel-2 satellite images for geological mapping in the south of Tafilalet basin (Eastern Anti-Atlas, Morocco). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 75-82. https://doi.org/10.5194/isprs-archives-XLII-4-W12-75-2019
Gabr, S., Ghulam, A., & Kusky, T. (2010). Detecting areas of high-potential gold mineralization using ASTER data. Ore Geology Reviews, 38(1-2), 59-69. https://doi.org/10.1016/j.oregeorev.2010.05.007
Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. (1998). A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1113-1126. https://doi.org/10.1109/36.700995
Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65-74. https://doi.org/10.1109/36.3001
Hewson, R. D., Cudahy, T. J., Mizuhiko, S., Ueda, K., & Mauger, A. J. (2005). Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99(1-2), 159-172. https://doi.org/10.1016/j.rse.2005.04.025
Hewson, R., Robson, D., Carlton, A., & Gilmore, P. (2017). Geological application of ASTER remote sensing within sparsely outcropping terrain, Central New South Wales, Australia. Cogent Geoscience, 3(1), 1319259. https://doi.org/10.1080/23312041.2017.1319259
Hook, S. J., Gabell, A. R., Green, A. A., & Kealy, P. S. (1992). A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sensing of Environment, 42(2), 123-135. https://doi.org/10.1016/0034-4257(92)90096-3
Inzana, J., Kusky, T., Higgs, G., & Tucker, R. (2003). Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences, 37(1-2), 59-72. https://doi.org/10.1016/S0899-5362(03)00071-X
Kenea, N. H. (1997). Improved geological mapping using Landsat TM data, Southern Red Sea Hills, Sudan: PC and IHS decorrelation stretching. International Journal of Remote Sensing, 18(6), 1233-1244. https://doi.org/10.1080/014311697218386
Khan, S. D., Mahmood, K., & Casey, J. F. (2007). Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data. Journal of Asian Earth Sciences, 30(2), 333-343. https://doi.org/10.1016/j.jseaes.2006.11.001
Kühn, J., Brenning, A., Wehrhan, M., Koszinski, S., & Sommer, M. (2009). Interpretation of electrical conductivity patterns by soil properties and geological maps for precision agriculture. Precision Agriculture, 10(6), 490-507. https://doi.org/10.1007/s11119-008-9103-z
Loughlin, W. P. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), 1163-1169.
NASA, L. D. (2021). ASTER level 1 precision terrain corrected registered at-sensor radiance V003 [data set]. NASA EOSDIS land processes DAAC.
Ninomiya, Y., Fu, B., & Cudahy, T. J. (2005). Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared "radiance-at-sensor" data. Remote Sensing of Environment, 99(1-2), 127-139. https://doi.org/10.1016/j.rse.2005.06.009
Othman, A. A., & Gloaguen, R. (2017). Integration of spectral, spatial and morphometric data into lithological mapping: A comparison of different Machine Learning Algorithms in the Kurdistan Region, NE Iraq. Journal of Asian Earth Sciences, 146, 90-102. https://doi.org/10.1016/j.jseaes.2017.05.005
Pournamdari, M., Hashim, M., & Pour, A. B. (2014). Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, south Iran. Advances in Space Research, 54(4), 694-709. https://doi.org/10.1016/j.asr.2014.04.022
Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14(3-4), 157-183. https://doi.org/10.1016/S0169-1368(99)00007-4
Sultan, M., Arvidson, R. E., Sturchio, N. C., & Guinness, E. A. (1987). Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq dome, Egypt. Geological Society of America Bulletin, 99(5), 748-762. https://doi.org/10.1130/0016-7606(1987)99<748:LMIARW>2.0.CO;2
Sunar, F. (1998). An analysis of changes in a multi-date data set: a case study in the Ikitelli area, Istanbul, Turkey. International Journal of Remote Sensing, 19(12), 2255-2268. https://doi.org/10.1080/014311698216215
Tommaso, C., & Rubinstein, N. (2007). Integrating geophysical and satellite techniques for geological modelling: The NW sector of the San Jorge Basin, Argentina. International Journal of Remote Sensing, 28(14), 2991-3003.
van der Meer, F., & de Jong, S. M. (2001). Imaging spectrometry: Basic principles and prospective applications. Springer Science & Business Media.
van der Meer, F. D., Hecker, C. A., van Ruitenbeek, F. J. A., van der Werff, H. M. A., Bakker, W. H., Noomen, M. F., & Hamre, T. (2012). Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1), 112-128. https://doi.org/10.1016/j.jag.2011.08.002
van der Werff, H. M. A., & van der Meer, F. D. (2016). Sentinel-2 for mapping iron absorption feature parameters. Remote Sensing, 8(6), 529. https://doi.org/10.3390/rs8110883
Vicente-Serrano, S. M., Pérez-Cabello, F., & Lasanta, T. (2008). Remote sensing of environmental indicators of desertification. Environmental Science & Policy, 10(2), 133-142.
Zhang, J., Sun, Q., Wang, C., Dong, W., & Fu, R. (2021). Geological mapping and rock discrimination using deep learning on hyperspectral images: A case study in Zhaoyuan City, China. Remote Sensing, 13(20), 3980.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.